
re-bar

«In Sika MonoTop-422 PCC sprayed mortar»

Empa experiments show that the entire prestressing force of an embedded memory-steel stirrup can be introduced as shear resistance in the structure. This leads to an increased service load and additional load-bearing capacity.

System tested with memory-steel

Mortar in combination with re-bar:

- > Sika MonoTop-452 N «Reprofiling mortar horizontal»
- > SikaGrout-311 «Grouting in the slot»
- ➤ Sika MonoTop-422 PCC «Sprayed mortar vertical/overhead» ➤ SikaCrete-213F «Fire protection sprayed mortar»

Fire protection in combination with re-plate:

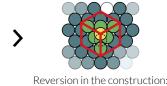
- > SikaCem Pyrocoat «Fire Protection sprayed mortar»

Switzerland

re-fer AG Riedmattli 9 CH-6423 Seewen T+41418186666

Germany

re-fer GmbH Neuenburger Strasse 37 DE-79379 Müllheim T+49 151-11333430


steel plant

Atomic structure in the memory-steel

Activating «heating»

Delivery and installation at the construction site

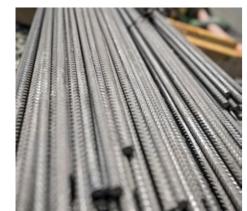
memory-steel

Easy and efficient prestressing.

Bending tests with memory-steel

re-plate

Steel strips 120 mm x 1.5 mm


Dimension	Cross-section	Maximal stress $f_{s,ud}^{*}$	Anchorage $F_{s,ud}$	Relaxation
120/1.5 mm	180 mm²	610 N/mm²	105 kN	15% nach t _∞

^{**} Design value at anchorage failure

	Heating temperature	Prestressing force $F_{p,\theta}$	Prestressing $\sigma_{p,\theta}$
Heating by gas burner:	300 - 350 °C	75.5 kN	420 N/mm ²
Heating by infrared transmitter: - in case of flammable material close to the heated zones - in case of corrosion protection on the re-plate	165 °C	54.0 kN **	300 N/mm²

^{**} A reduced prestress can be obtained with lower heating temperature

re-bar

Ribbed steel bar Ø12 mm

re-bar:

Diameter	Cross-section	Pres	tressing $F_{p, heta}$	Breaking force $F_{s,u}$
12 mm	105 mm ²	35 kl	N	68 kN
Tensile strength $f_{s,u}$	Strain at failure $\varepsilon_{s,u}$		Prestress $\sigma_{p,\theta}$	Relaxation
650 N/mm ²	>10%		340 N/mm ²	15% after t

^{*} Reduced prestress can be achieved at lower heating temperatures

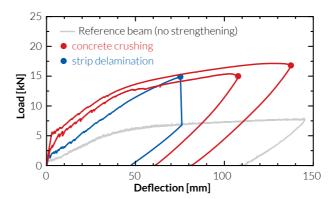
Structure reinforcement with memory-steel

Strengthening reinforced concrete

- > positive / negative bending moment
- > Shear reinforcement
- > Seismic retrofitting
- **>** Confinements
- > Prestressing of compling joints

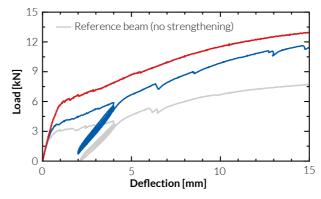
Reinforcement of steel components

> Bridging fatigue cracks


Application in new constructions

- > Prestressing in situ casted components
- > Prestressing of precast components

- > 15% relaxation (t = ∞) with stable stress evolution over time
- > very good corrosion resistance (CHP 1)
- > Service life of over 250 hours in the adapted fib test for stress corrosion cracking

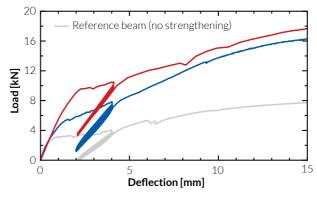


re-plate

«Mechanically anchored with Hilti direct fastening»

(pos. and neg. moment)	C	ompared with CFRP strip
	re-plate	CFRP strip
Axial stiffness EA [kN]	~10*103	~11*10³
Cracking load [kN]	3.4 - 5.4	2.0

> 70 - 170% increase compared to the CFRP lamina



re-bar

«In Sika grouting mortar SikaGrout-311»

(neg. moment) compa		compared with slotted CFRP
	re-bar	slotted CFRP
Axial stiffness EA [kN]	~4.4*103	~4.0*103
Cracking load [kN]	6.0	3.0

> 100% increase compared to slotted CFRP

re-bar

«In Sika MonoTop-422 PCC sprayed mortar»

(pos. moment)	Comparison activated / not activated	
memory-steel:	activated	not activated
Cracking load [kN]	9.0	5.0

80% increase compared to strengthening without prestressing

Test reports and publications on request.