Structural Reinforcement

re-bar

«In Sika MonoTop-422 PCC sprayed mortar»

Empa experiments show that the entire prestressing force of an embedded memory-steel stirrup can be introduced as shear resistance in the structure. This leads to an increased service load and additional load-bearing capacity.

System tested with memory-steel

Mortar in combination with re-bar:

Fire protection in combination with re-plate:

> Sika MonoTop-452 N «Reprofiling mortar horizontal» > SikaGrout-311 «Grouting in the slot»

- > SikaCem Pyrocoat «Fire Protection sprayed mortar»
- Sika MonoTop-422 PCC «Sprayed mortar vertical/overhead»
 SikaCrete-213F «Fire protection sprayed mortar»

Easy and efficient prestressing.

Atomic structure in the memory-steel

Prestressing by re-fer

Switzerland Germany

re-fer AG Riedmattli 9 CH-6423 Seewen T+41418186666

re-fer GmbH

Neuenburger Strasse 37 DE-79379 Müllheim T+49 151-11333430

www.re-fer.eu info@re-fer.eu

Initial alloy in the steel plant

Activating «heating»

Delivery and installation at the construction site

Reversion in the construction: prestress

memory-steel products

Bending tests with memory-steel

re-plate

Steel strips 120 mm x 1.5 mm

re-plate:

Dimensions	Cross-se	ction	Prestressing force $F_{p,\theta}$	$Prestress\sigma_{\!{}_{p,\theta^*}}$	Relaxation
120/1.5 mm	180 mm²		68 kN	380 N/mm ²	15% after $t_{_{\!\!\infty}}$
Maximal stress $f_{s, ud} $ Anch		* In case corrosion protection is require activating temperature is 165 °C, this in prestress 300N/mm ² (54 kh/re-pla		tion is required max. s 165 °C, this results (54 kN/re-plate)	
610MPa		109.8	kN	** Design value at anchorage failure	

re-bar

Ribbed steel bar Ø12 mm

re-bar:

Diameter	Cross-section	Pres	tressing $F_{p,\theta}$	Breaking force $F_{s, u}$
12 mm	105 mm ²	35 ki	N	68 kN
Tensile strength $f_{s,u}$	Strain at failure $\varepsilon_{s,u}$		Prestress $\sigma_{_{p,\theta}}$	Relaxation
650 N/mm ²	>10%		340 N/mm ²	15% after $t_{\scriptscriptstyle \infty}$

* Reduced prestress can be achieved at lower heating temperatures

Structure reinforcement with memory-steel

Strengthening reinforced concrete

- > positive / negative bending moment
- > Shear reinforcement
- > Seismic retrofitting
- > Confinements
- > Prestressing of compling joints

Reinforcement of steel components

> Bridging fatigue cracks

Application in new constructions

> Prestressing in situ casted components > Prestressing of precast components

> very ductile material

- (re-plate strain at failure >10%, re-bar >10%)
- > 15% relaxation (t = ∞) with stable stress evolution
 - over time
- > very good corrosion resistance (CHP 1)
- > Service life of over 250 hours in the adapted
 - fib test for stress corrosion cracking

🧐 Empa

re-plate

«Mechanically anchored with Hilti direct fastening»

neg.	moment)

compared with CFRP strip

	re-plate	CFRP strip
tiffness EA [kN]	~10*103	~11*103
ng load [kN]	3.4 - 5.4	2.0

> 70 - 170% increase compared to the CFRP lamina

«In Sika grouting mortar SikaGrout-311»

compared with slotted CFRP

	re-bar	slotted CFRP
tiffness EA [kN]	~4.4*103	~4.0*103
ng load [kN]	6.0	3.0

> 100% increase compared to slotted CFRP

«In Sika MonoTop-422 PCC sprayed mortar»

ment)	Comparison activated / not activated		
ry-steel:	activated	not activated	
ng load [kN]	9.0	5.0	

80% increase compared to strengthening without prestressing